Pengertian Gerak Linear

Pengertian Gerak Linear

Pengertian Gerak Linear

Pengertian Gerak Linear
Pengertian Gerak Linear

Pengertian Gerak Linear -Dalam kehidupan sehari-hari kita sering melihat benda yang sedang bergerak atau kita sendiri sedang melakukan gerakan. Pada fisika, gerak merupakan konsep yang penting. Coba bandingkan konsep gerak pada fisika dengan apa yang diartikan pada kehidupan seharihari. Misalnya, kereta api berangkat dari  tasiun, pengantar melihat bahwa kereta api makin lama makin jauh. Ia katakan bahwa kereta api itu bergerak.
Bagi penumpang kesan bergerak timbul karena ia melihat jarak stasiun makin jauh. Bagaimanakah dengan sesama penumpang, apakah ia bergerak?

Jarak antar penumpang adalah tetap, kesan bergerak antara sesama
penumpang tidak ada. Penumpang yang duduk tetap duduk di dalam kereta api. Dengan demikian dapat dikatakan, kereta api tidak bergerak terhadap penumpang, tetapi kereta api bergerak terhadap pengamat yang berada di stasiun.
Masalah berikutnya, bagaimana Anda menentukan perubahan
kedudukan benda yang bergerak?

Terbayang di benaknya bagaimana rel kereta api berkelok, mulai lurus, berbelok ke kiri, lurus kembali, berbelok ke kanan, dan seterusnya. Masalah ini sebenarnya menyangkut bentuk lintasan, ada lintasan lurus, lintasan melengkung, atau berkelok.
Benda yang bergerak dengan lintasan lurus dinamakan gerak lurus. Gerak sebuah benda melalui sebuah garis disebut gerak linear.
Dari uraian di atas tampak bahwa gerak sebuah benda bersifat relatif, artinya tergantung acuan tertentu yang dianggap diam.

Pengertian Gerak Linear

Kegiatan 1.1

Diskusikan pertanyaan-pertanyaan berikut dengan kelompok Anda!
1. Bergerakkah bumi yang kita tempati ini? Berilah penjelasan!
2. Dalam tata surya, matahari berotasi pada sumbunya di suatu tempat.

Mengapa dilihat dari bumi matahari tampak bergerak? Berilah penjelasan!
1. Kedudukan, Perpindahan, dan Jarak
Setelah kereta api bergerak beberapa saat, mungkin menimbulkan pertanyaan di benak pengantar, sudah sampai di manakah kereta api itu sekarang?
Tentu yang dibayangkan orang itu, di mana tempat kereta api berada. Ketika kereta api bergerak dengan lintasan lurus masalah itu mudah digambarkan, yaitu menggunakan garis bilangan.

2. Persamaan Gerak
Pada garis bilangan ditetapkan suatu titik O sebagai titik acuan. Titik ini merupakan titik pangkal pengukuran. Perhatikan gambar 1.1 di bawah ini!
Keterangan:
Titik O sebagai titik acuan
Garis yang titik-titiknya diberi tanda positif disebut sumbu positif dan arahnya disebut arah positif (arah sumbu positif).
Kedudukan benda dinyatakan oleh tanda positif atau negatif yang menyatakan arah dan jarak terhadap titik acuan menyatakan besarnya.
Kedudukan adalah besaran vektor yang dilambangkan dengan anak panah.
Panjang sebuah garis tempat perubahan kedudukan benda disebut lintasan benda. Jika benda berpindah dari A ke B, maka arahnya dari A ke B dan nilainya sebesar AB. Secara vektor dinyatakan sebagai atau , yaitu selisih kedudukan B terhadap A. Jika benda tersebut berpindah sepanjang sumbu x dengan titik O sebagai acuan, maka pernyataan vektor untuk gerak linear tersebut dinyatakan dengan , maka
Contoh Soal 1.1
1. Sebuah benda bergerak pada sumbu x mula-mula berada di titik O (titik acuan), kemudian bergerak sehingga perpindahannya + 3 m. Setelah itu benda melanjutkan gerakan sehingga perpindahannya + 5 m dari titik perpindahan pertama. Di mana kedudukan benda itu sekarang?
Untuk gerakan pertama: Untuk gerakan kedua
Jadi, kedudukan benda itu 8 m di sebelah kanan O dan selama itu benda
telah menempuh jarak 3 m + 5 m = 8 m.

Pengertian Besaran Turunan Dalam Ruang Lingkup Fisika

Pengertian Besaran Turunan Dalam Ruang Lingkup Fisika

Pengertian Besaran Turunan Dalam Ruang Lingkup Fisika

besaran-turunan-dan-satuannya

Besaran turunan adalah besaran yang dapat diturunkan atau didefinisikan dari besaran pokok. Satuan besaran turunan disesuaikan dengan satuan besaran pokoknya. Salah satu contoh besaran turunan yang sederhana ialah luas. Luas merupakan hasil kali dua besaran panjang, yaitu panjang dan lebar. Oleh karena itu, luas merupakan turunan dari besaran panjang Luas = panjang lebar = besaran panjang besaran panjang Satuan luas = meter meter = meter persegi (m2 ) Besaran turunan yang lain misalnya volume. Volume merupakan kombinasi tiga besaran panjang, yaitu panjang, lebar, dan tinggi. Volume juga merupakan turunan dari besaran panjang. Adapun massa jenis merupakan kombinasi besaran massa dan besaran volume. Selain itu, massa jenis merupakan turunan dari besaran pokok massa dan panjang.

Dimensi Besaran

Besaran Turunan – Dimensi adalah cara penulisan suatu besaran dengan menggunakan simbol (lambang) besaran pokok. Hal ini berarti dimensi suatu besaran menunjukkan cara besaran itu tersusun dari besaran-besaran pokok. Apa pun jenis satuan besaran yang digunakan tidak memengaruhi dimensi besaran tersebut, misalnya satuan panjang dapat dinyatakan dalam m, cm, km, atau ft, keempat satuan itu mempunyai dimensi yang sama, yaitu L. 

Di dalam mekanika, besaran pokok panjang, massa, dan waktu merupakan besaran yang berdiri bebas satu sama lain, sehingga dapat berperan sebagai dimensi. Dimensi besaran panjang dinyatakan dalam L, besaran massa dalam M, dan besaran waktu dalam T. Persamaan yang dibentuk oleh besaran-besaran pokok tersebut haruslah konsisten secara dimensional, yaitu kedua dimensi pada kedua ruas harus sama.

Analisis Dimensi

Besaran Turunan – Setiap satuan turunan dalam fisika dapat diuraikan atas faktor-faktor yang didasarkan pada besaran-besaran massa, panjang, dan waktu, serta besaran pokok yang lain. Salah satu manfaat dari konsep dimensi adalah untuk menganalisis atau menjabarkan benar atau salahnya suatu persamaan. Metode penjabaran dimensi atau analisis dimensi menggunakan aturan-aturan: a. dimensi ruas kanan = dimensi ruas kiri, b. setiap suku berdimensi sama. Sebagai contoh, untuk menganalisis kebenaran dari dimensi jarak tempuh dapat dilihat persamaan berikut ini. Jarak tempuh = kecepatan waktu s = v t Dari Tabel 1.5 tentang dimensi beberapa besaran turunan dapat diperoleh: – dimensi jarak tempuh = dimensi panjang = [ L] – dimensi kecepatan = [ L][ T ]-1 – dimensi waktu = [T] Maka dimensi jarak tempuh dari rumus s = v t , untuk ruas kanan: [ jarak tempuh] = [ kecepatan] × [waktu] [ L] = [ L][ T ]-1 × [ T ] [ L] = [ L] Dimensi besaran pada kedua ruas persamaan sama, maka dapat disimpulkan bahwa kemungkinan persamaan tersebut benar. Akan tetapi, bila dimensi besaran pada kedua ruas tidak sama, maka dapat dipastikan persaman tersebut salah.

Alat Ukur

Alat-alat ukur panjang yang dipakai untuk mengukur panjang suatu benda antara lain mistar, rollmeter, jangka sorong, dan mikrometer sekrup.    7″  8 Mistar/penggaris berskala terkecil 1 mm mempunyai ketelitian 0,5 mm. Ketelitian pengukuran menggunakan mistar/penggaris adalah setengah nilai skala terkecilnya.  Dalam setiap pengukuran dengan menggunakan mistar, usahakan kedudukan pengamat (mata) tegak lurus dengan skala yang akan diukur. Hal ini untuk menghindari kesalahan penglihatan (paralaks). Paralaks yaitu kesalahan yang terjadi saat membaca skala suatu alat ukur karena kedudukan mata pengamat tidak tepat. %   7  =%/8 Rollmeter merupakan alat ukur panjang yang dapat digulung, dengan panjang 25 – 50 meter. Meteran ini dipakai oleh tukang bangunan atau pengukur lebar jalan. Ketelitian pengukuran dengan rollmeter sampai 0,5 mm. Meteran ini biasanya dibuat dari plastik atau pelat besi tipis, tampak+ 2  / /  Jangka sorong adalah alat yang digunakan untuk mengukur panjang, tebal, kedalaman lubang, dan diameter luar maupun diameter dalam suatu benda dengan batas ketelitian 0,1 mm. Jangka sorong mempunyai dua rahang, yaitu rahang tetap dan rahang sorong. Pada rahang tetap dilengkapi dengan skala utama, sedangkan pada rahang sorong terdapat skala nonius atau skala vernier. Skala nonius mempunyai panjang 9 mm yang terbagi menjadi 10 skala dengan tingkat ketelitian 0,1 mm. Hasil pengukuran menggunakan jangka sorong berdasarkan angka pada skala utama ditambah angka pada skala nonius yang dihitung dari 0 sampai dengan garis skala nonius yang berimpit dengan garis skala utama.

 ” Mikrometer sekrup merupakan alat ukur ketebalan benda yang relatif tipis, misalnya kertas, seng, dan karbon. Pada mikrometer sekrup terdapat dua macam skala, yaitu skala tetap dan skala putar (nonius). 1) Skala tetap (skala utama) Skala tetap terbagi dalam satuan milimeter (mm). Skala ini terdapat pada laras dan terbagi menjadi dua skala, yaitu skala atas dan skala bawah. 2) Skala putar (skala nonius) Skala putar terdapat pada besi penutup laras yang dapat berputar dan dapat bergeser ke depan atau ke belakang. Skala ini terbagi menjadi 50 skala atau bagian ruas yang sama. Satu putaran pada skala ini menyebabkan skala utama bergeser 0,5 mm. Jadi, satu skala pada skala putar mempunyai ukuran: 0,5 mm 0,01mm 50 1 × = . Ukuran ini merupakan batas ketelitian mikrometer sekrup.

Contoh Soal

Hasil pengukuran dengan mikrometer sekrup pada skala utama menunjukkan angka 4,5 mm dan skala putar menunjuk angka 25. Berapakah hasil pengukurannya? Penyelesaian: Bagian skala utama menunjukkan = 4,5 mm Bagian skala nonius menunjukkan = 25 × 0,01 = 0,25 mm Hasil pengukuran = 4,75 mm atau 0,475 cm    /  %%  “ % /       %” & ) %    4/ /, /% 1. Pe

Alat Ukur Besaran

Besaran massa diukur menggunakan neraca. Neraca dibedakan menjadi beberapa jenis, seperti neraca analitis dua lengan, neraca Ohauss, neraca lengan gantung, dan neraca digital.  A + % C!  Neraca ini berguna untuk mengukur massa benda, misalnya emas, batu, kristal benda, dan lain-lain. Batas ketelitian neraca analitis dua lengan yaitu 0,1 gram.  A + H, Neraca ini berguna untuk mengukur massa benda atau logam dalam praktek laboratorium. Kapasitas beban yang ditimbang dengan menggunakan neraca ini adalah 311 gram. Batas ketelitian neraca Ohauss yaitu 0,1 gram. + A +!  $   Neraca ini berguna untuk menentukan massa benda, yang cara kerjanya dengan menggeser beban pemberat di sepanjang batang.  A +C % Neraca digital (neraca elektronik) di dalam penggunaanya sangat praktis, karena besar massa benda yang diukur langsung ditunjuk dan terbaca pada layarnya. Ketelitian neraca digital ini sampai dengan 0,001 gram. 3 % 9 <  Waktu merupakan besaran yang menunjukkan lamanya suatu peristiwa berlangsung. Berikut ini beberapa alat untuk mengukur besaran waktu. a. Stopwatch, dengan ketelitian 0,1 detik karena setiap skala pada stopwatch dibagi menjadi 10 bagian. Alat ini biasanya digunakan untuk pengukuran waktu dalam kegiatan olahraga atau dalam praktik penelitian. b. Arloji, umumnya dengan ketelitian 1 detik. c. Penunjuk waktu elektronik, mencapai ketelitian 1/1000 detik. d. Jam atom Cesium, dibuat dengan ketelitian 1 detik tiap 3.000 tahun, artinya kesalahan pengukuran jam ini kira-kira satu detik dalam kurun waktu 3.000 tahun.  

Kuat Arus

Alat untuk mengukur kuat arus listrik disebut amperemeter. Amperemeter mempunyai hambatan dalam yang sangat kecil, pemakaiannya harus dihubungkan secara seri pada rangkaian yang diukur, sehingga jarum menunjuk angka yang merupakan besarnya arus listrik yang mengalir.

Alat Ukur Suhu

Untuk mengukur suhu suatu sistem umumnya menggunakan termometer. Termometer dibuat berdasarkan prinsip pemuaian. Termometer biasanya terbuat dari sebuah tabung pipa kapiler tertutup yang berisi air raksa yang diberi skala. Ketika suhu bertambah, air raksa dan tabung memuai. Pemuaian yang terjadi pada air raksa lebih besar dibandingkan pemuaian pada tabung kapiler. Naiknya ketinggian permukaan raksa dalam tabung kapiler dibaca sebagai kenaikan suhu. Berdasarkan skala temperaturnya, termometer dibagi dalam empat macam, yaitu termometer skala Fahrenheit, skala Celsius, skala Kelvin, dan skala Reamur. Termometer skala Fahrenheit memiliki titik beku pada suhu 32 o F dan titik didih pada 212 o F. Termometer skala Celsius memiliki titik beku pada suhu 0 o C, dan titik didih pada 100 o C. Termometer skala Kelvin memiliki titik beku pada suhu 273 K dan titik didih pada 373 K. Suhu 0 K disebut suhu nol mutlak, yaitu suhu semua molekul berhenti bergerak. Dan termometer skala Reamur memiliki titik beku pada suhu 0 o R dan titik didih pada 80 o R.

Besaran Vektor adalah jenis besaran yang mempunyai nilai dan arah. Besaran yang termasuk besaran vektor antara lain perpindahan, gaya, kecepatan, percepatan, dan lainlain. Sebuah vektor digambarkan sebagai sebuah ruas garis berarah yang mempunyai titik tangkap (titik pangkal) sebagai tempat permulaan vektor itu bekerja. Panjang garis menunjukkan nilai vektor dan arah panah menunjukkan arah vektor itu bekerja. Garis yang melalui vektor tersebut dinamakan garis kerja. Penulisan sebuah simbol besaran vektor dengan menggunakan huruf tegak dicetak tebal, misalnya vektor AB ditulis AB. Selain itu, dapat pula dinyatakan dengan huruf miring dengan tanda panah di atasnya, misalnya vektor AB ditulis AB . 2

Besaran dan Satuan Pengertian Tentang Dalam Fisika

Besaran dan Satuan Pengertian Tentang Dalam Fisika

Besaran dan Satuan Pengertian Tentang Dalam Fisika

besaran dan satuan
besaran dan satuan

 

Besaran dan SatuanFisika adalah salah satu ilmu pengetahuan alam dasar yang banyak digunakan sebagai dasar bagi ilmu-ilmu yang lain. Fisika adalah ilmu yang mempelajari gejala alam secara keseluruhan. Fisika mempelajari materi, energi, dan fenomena atau kejadian alam, baik yang bersifat makroskopis (berukuran besar, seperti gerak Bumi mengelilingi Matahari) maupun yang bersifat mikroskopis (berukuran kecil, seperti gerak elektron mengelilingi inti) yang berkaitan dengan perubahan zat atau energi. Fisika menjadi dasar berbagai pengembangan ilmu dan teknologi. Kaitan antara fisika dan disiplin ilmu lain membentuk disiplin ilmu yang baru, misalnya dengan ilmu astronomi membentuk ilmu astrofisika, dengan biologi membentuk biofisika, dengan ilmu kesehatan membentuk fisika medis, dengan ilmu bahan membentuk fisika material, dengan geologi membentuk geofisika, dan lain-lain. Pada bab ini akan dipelajari tentang dasar-dasar ilmu fisika.

besaran dan satuan

Ruang Lingkup Fisika 

Fisika berasal dari bahasa Yunani yang berarti “alam”. Fisika adalah ilmu pengetahuan yang mempelajari sifat dan gejala pada benda-benda di alam. Gejala-gejala ini pada mulanya adalah apa yang dialami oleh indra kita, misalnya penglihatan menemukan optika atau cahaya, pendengaran menemukan pelajaran tentang bunyi, dan indra peraba yang dapat merasakan panas. Mengapa kalian perlu mempelajari Fisika? Fisika menjadi ilmu pengetahuan yang mendasar, karena berhubungan dengan perilaku dan struktur benda, khususnya benda mati. Menurut sejarah, fisika adalah bidang ilmu yang tertua, karena dimulai dengan pengamatanpengamatan dari gerakan benda-benda langit, bagaimana lintasannya, periodenya, usianya, dan lain-lain. Bidang ilmu ini telah dimulai berabad-abad yang lalu, dan berkembang pada zaman Galileo dan Newton. Galileo merumuskan hukum-hukum mengenai benda yang jatuh, sedangkan Newton mempelajari gerak pada umumnya, termasuk gerak planet-planet pada sistem tata surya.

besaran dan satuan – Pada zaman modern seperti sekarang ini, ilmu fisika sangat mendukung perkembangan teknologi, industri, komunikasi, termasuk kerekayasaan (engineering), kimia, biologi, kedokteran, dan lain-lain. Ilmu fisika dapat menjawab pertanyaan-pertanyaan mengenai fenomenafenomena yang menarik. Mengapa bumi dapat mengelilingi matahari? Bagaimana udara dapat menahan pesawat terbang yang berat? Mengapa langit tampak berwarna biru?

besaran dan satuan –  Bagaimana siaran/tayangan TV dapat menjangkau tempattempat yang jauh? Mengapa sifat-sifat listrik sangat diperlukan dalam sistem komunikasi dan industri? Bagaimana peluru kendali dapat diarahkan ke sasaran yang letaknya sangat jauh, bahkan antarbenua? Dan akhirnya, bagaimana pesawat dapat mendarat di bulan? Ini semua dipelajari dalam berbagai bidang ilmu fisika. Bidang fisika secara garis besar terbagi atas dua kelompok, yaitu fisika klasik dan fisika modern. Fisika klasik bersumber pada gejala-gejala yang ditangkap oleh indra. Fisika klasik meliputi mekanika, listrik magnet, panas, bunyi, optika, dan gelombang yang menjadi perbatasan antara fisika klasik dan fisika modern. Fisika modern berkembang mulai abad ke-20, sejak penemuan teori relativitas Einstein dan radioaktivitas oleh keluarga Curie.

2. Hubungan Fisika dengan Ilmu Pengetahuan Lain 

besaran dan satuan – Tujuan mempelajari ilmu fisika adalah agar kita dapat mengetahui bagian-bagian dasar dari benda dan mengerti interaksi antara benda-benda, serta mampu menjelaskan mengenai fenomena-fenomena alam yang terjadi. Walaupun fisika terbagi atas beberapa bidang, hukum fisika berlaku universal. Tinjauan suatu fenomena dari bidang fisika tertentu akan memperoleh hasil yang sama jika ditinjau dari bidang fisika lain. Selain itu konsep-konsep dasar fisika tidak saja mendukung perkembangan fisika sendiri, tetapi juga perkembangan ilmu lain dan teknologi. Ilmu fisika menunjang riset murni maupun terapan. Ahli-ahli geologi dalam risetnya menggunakan metode-metode gravimetri, akustik, listrik, dan mekanika. Peralatan modern di rumah sakit-rumah sakit menerapkan ilmu fisika. Ahli-ahli astronomi memerlukan optik spektografi dan teknik radio. Demikian juga ahli-ahli meteorologi (ilmu cuaca), oseanologi (ilmu kelautan), dan seismologi memerlukan ilmu fisika.

3. Fisika lahir dan berkembang dari hasil percobaan dan pengamatan.

Percobaan (eksperimen) dan pengamatan (observasi) memerlukan pengukuran (measurement) dengan bantuan alat-alat ukur, sehingga diperoleh data/ hasil pengamatan yang bersifat kuantitatif. Sebagai contoh, hasil pengukuran pada suatu percobaan diperoleh panjang terukur 4 meter, volume air 10 cm3 pada suhu 15 o C. Dalam fisika, panjang, volume, dan suhu adalah sesuatu yang dapat diukur. Sesuatu yang dapat diukur itu disebut besaran. Besaran mempunyai dua komponen utama, yaitu nilai dan satuan. Dalam ilmu fisika, perlu diingat bahwa tidak semua besaran fisika mempunyai satuan, sebagai contoh indeks bias dan massa jenis relatif.

Besaran Pokok dan Satuan Standar

Besaran-besaran dalam fisika dapat dikelompokkan menjadi dua macam, yaitu besaran pokok dan besaran turunan. Besaran pokok adalah besaran yang satuannya didefinisikan atau ditetapkan terlebih dahulu, yang berdiri sendiri, dan tidak tergantung pada besaran lain.

besaran dan satuan – Satuan merupakan salah satu komponen besaran yang menjadi standar dari suatu besaran. Sebuah besaran tidak hanya memiliki satu satuan saja. Besaran panjang ada yang menggunakan satuan inci, kaki, mil, dan sebagainya. Untuk massa dapat menggunakan satuan ton, kilogram, gram, dan sebagainya. Adanya berbagai macam satuan untuk besaran yang sama akan menimbulkan kesulitan. Kalian harus melakukan penyesuaian-penyesuaian tertentu untuk memecahkan persoalan yang ada.

Dengan adanya kesulitan tersebut, para ahli sepakat untuk menggunakan satu sistem satuan, yaitu menggunakan satuan standar Sistem Internasional, disebut Systeme Internationale d’Unites (SI). Satuan Internasional adalah satuan yang diakui penggunaannya secara internasional serta memiliki standar yang sudah baku. Satuan ini dibuat untuk menghindari kesalahpahaman yang timbul dalam bidang ilmiah karena adanya perbedaan satuan yang digunakan. Pada awalnya, Sistem Internasional disebut sebagai Metre – Kilogram – Second (MKS). Selanjutnya pada Konferensi Berat dan Pengukuran Tahun 1948, tiga satuan yaitu newton (N), joule (J), dan watt (W) ditambahkan ke dalam SI. Akan tetapi, pada tahun 1960, tujuh Satuan Internasional dari besaran pokok telah ditetapkan yaitu meter, kilogram, sekon, ampere, kelvin, mol, dan kandela.

Sistem MKS menggantikan sistem metrik, yaitu suatu sistem satuan desimal yang mengacu pada meter, gram yang didefinisikan sebagai massa satu sentimeter kubik air, dan detik. Sistem itu juga disebut sistem Centimeter – Gram – Second (CGS). Satuan dibedakan menjadi dua jenis, yaitu satuan tidak baku dan satuan baku. Standar satuan tidak baku tidak sama di setiap tempat, misalnya jengkal dan hasta. Sementara itu, standar satuan baku telah ditetapkan sama di setiap tempat.

Satuan besaran panjang berdasarkan SI dinyatakan dalam meter (m). Ketika sistem metrik diperkenalkan, satuan meter diusulkan setara dengan sepersepuluh juta kali seperempat garis bujur bumi yang melalui kota Paris. Tetapi, penyelidikan awal geodesik menunjukkan ketidakpastian standar ini, sehingga batang platinairidium yang asli dibuat dan disimpan di Sevres dekat Paris, Prancis. Jadi, para ahli menilai bahwa meter standar itu kurang teliti karena mudah berubah. Para ahli menetapkan lagi patokan panjang yang nilainya selalu konstan. Pada tahun 1960 ditetapkan bahwa satu meter adalah panjang yang sama dengan 1.650.763,73 kali panjang gelombang sinar jingga yang dipancarkan oleh atom-atom gas kripton-86 dalam ruang hampa pada suatu loncatan listrik. Definisi baru menyatakan bahwa satuan panjang SI adalah panjang lintasan yang ditempuh cahaya dalam ruang hampa selama selang waktu 299.792.458 1 sekon.

Satuan standar untuk massa adalah kilogram (kg). Satu kilogram standar adalah massa sebuah silinder logam yang terbuat dari platina iridium yang disimpan di Sevres, Prancis. Silinder platina iridium memiliki diameter 3,9 cm dan tinggi 3,9 cm. Massa 1 kg standar mendekati massa 1 liter air murni pada suhu 4 o C.

Satuan SI waktu adalah sekon (s). Mula-mula ditetapkan bahwa satu sekon sama dengan 86.400 1 rata-rata gerak semu matahari mengelilingi Bumi. Dalam pengamatan astronomi, waktu ini ternyata kurang tepat akibat adanya pergeseran, sehingga tidak dapat digunakan sebagai patokan. Selanjutnya, pada tahun 1956 ditetapkan bahwa satu sekon adalah waktu yang dibutuhkan atom cesium-133 untuk bergetar sebanyak 9.192.631.770 kali.

Satuan standar arus listrik adalah ampere (A). Satu ampere didefinisikan sebagai arus tetap, yang dipertahankan untuk tetap mengalir pada dua batang penghantar sejajar dengan panjang tak terhingga, dengan luas penampang yang dapat diabaikan dan terpisahkan sejauh satu meter dalam vakum, yang akan menghasilkan gaya antara kedua batang penghantar sebesar 2 × 10–7 Nm–1.

Suhu menunjukkan derajat panas suatu benda. Satuan standar suhu adalah kelvin (K), yang didefinisikan sebagai satuan suhu mutlak dalam termodinamika yang besarnya sama dengan 273,16 1 dari suhu titik tripel air. Titik tripel menyatakan temperatur dan tekanan saat terdapat keseimbangan antara uap, cair, dan padat suatu bahan. Titik tripel air adalah 273,16 K dan 611,2 Pa.

Satuan SI untuk jumlah zat adalah mol. Satu mol setara dengan jumlah zat yang mengandung partikel elementer sebanyak jumlah atom di dalam 1,2 10-2 kg karbon-12. Partikel elementer merupakan unsur fundamental yang membentuk materi di alam semesta. Partikel ini dapat berupa atom, molekul, elektron, dan lain-lain.