Pembahasan Tentang Mikroorganisme Pembasmi Hama Tanaman

Pembahasan Tentang Mikroorganisme Pembasmi Hama Tanaman

Pembahasan Tentang Mikroorganisme Pembasmi Hama Tanaman

Mikroorganisme Pembasmi Hama Tanaman
Mikroorganisme Pembasmi Hama Tanaman

Banyak bakteri yang hidup sebagai parasit pada jenis organisme saja dan tidak mengganggu atau merugikan organisme jenis lainnya. Sifat mikroorganisme semacam ini dapat dimanfaatkan dalam Bioteknologi pembasmian hama atau dikenal dengan biological control. Contohnya, adalah bakteri hasil rekayasa yang disebut bakteri minumes, merupakan keturunan dari Pseudomonas.

Bakteri ini dapat melawan pembentukan es selama musim dingin. Contoh lain adalah penggunan bakteri Bacillus thuringensis yang patogen terhadap ulat hama tanaman. Pengembangan bakteri memberikan banyak keuntungan. Pembasmian ulat hama dengan menggunakan Bacillus thuringensis ternyata tidak menimbulkan dampak negatif kepada lingkungan serta tidak meninggalkan residu. Cara lain mengatasi hama tanaman adalah dengan menghambat perkembangbiakan hewan hama. Caranya adalah menyemprotkan feromon insekta pada lahan pertanian. Feromon adalah substansi yang dikeluarkan hewan dan menyebabkan respon pada hewan sejenis seperti respon untuk seksualnya menurun. Akibatnya, populasi hewan hama akan berkurang secara perlahan-lahan.

Peran Mikroorganisme dalam Mengatasi Pencemaran

Salah satu dampak dari peledakan jumlah penduduk dan perkembangan teknologi adalah pencemaran terhadap lingkungan. Sebenarnya, pada batas-batas tertentu lingkungan sekitar kita masih mampu membersihkan dirinya dari segala macam zat pencemar. Namun, kalau jumlahnya sudah melebihi kemampuan lingkungan, maka untuk mengatasinya memerlukan keterlibatan manusia. Untuk mengatasi masalah pencemaran lingkungan ini, para pakar telah mencoba merekayasa mikroba untuk mendapatkan strain mikroba yang membantu mengatasi pencemaran, khususnya pencemaran limbah beracun. Apabila konsentrasinya berada di atas ambang batas, maka akan mengancam kelangsungan organisme yang lain. Yang dikembangkan saat ini antara lain, penanganan limbah oleh mikroorganisme yang mampu menghasilkan gas hidrogen. Mikroba tersebut adalah Clostridium butyrium. Dalam hal ini, bakteri akan mencerna dan menguraikan gula serta menghasilkan gas hidrogen. Gas ini dapat digunakan sebagai bahan bakar yang tidak menimbulkan polusi.

Mikroorganisme sebagai Pemisah Logam dari Bijihnya

Selama ribuan tahun, penyulingan minyak atau mineral dan memisahkan tembaga dari bijih yang berkualitas rendah dengan proses leaching atau meluluhkan. Pada 1957, berhasil dikembangkan teknik pemisahan tembaga dari bijinya dengan menggunakan jasa bakteri. Bakteri yang dapat memisahkan tembaga dari bijihnya adalah Thiobacillus ferooxidans yang berasal dari hasil oksidasi senyawa anorganik khususnya senyawa besi dan belerang. Bakteri ini termasuk jenis bakteri khemolitotrop atau bakteri pemakan batuan. Bakteri khemolitotrop tumbuh subur pada lingkungan yang miskin senyawa organik, karena mampu mengekstrak karbon langsung dari CO2 di atmosfer. Proses pemisahan tembaga dari bijihnya berlangsung sebagai berikut.

Bakteri Thiobacillus ferooxidans mengoksidasi senyawa besi belerang (besi sulfida) di sekelilingnya. Proses ini membebaskan sejumlah energi yang digunakan untuk membentuk senyawa yang diperlukannya. Selain energi, proses oksidasi tersebut juga menghasilkan senyawa asam sulfat dan besi sulfat yang dapat menyerang batuan di sekitarnya serta melepaskan logam tembaga dari bijihnya. Jadi, aktivitas Thiobacillus ferooxidans akan mengubah tembaga sulfida yang tidak larut dalam air menjadi tembaga sulfat yang larut dalam air. Pada saat air mengalir melalui bebatuan, senyawa tembaga sulfat (CuSO4 ) akan ikut terbawa dan lambat laun terkumpul pada kolam berwarna biru cemerlang. Proses pemisahan logam dari bijihnya secara besar-besaran dapat dijelaskan sebagai berikut. Bakteri ini secara alami terdapat di dalam larutan peluluh. Penambang tembaga akan menggerus batu pengikat logam atau tembaga dan akan menyimpannya ke dalam lubang tempat buangan. Kemudian, mereka menuangkan larutan asam sulfat ke tempat buangan tersebut. Saat larutan peluruh mengalir melalui dasar tempat buangan, larutan peluluh akan mengandung tembaga sulfat. Selanjutnya, penambang akan menambah logam besi ke dalam larutan peluluh. Tembaga sulfat akan bereaksi dengan besi membentuk besi sulfat yang mampu memisahkan logam tembaga dari bijinya.

CuSO4 + 2Fe+ + H2 SO4 ? 2FeSO4 + Cu+ + 2H+

Secara umum,  Thiobacillus ferooxidans membebaskan tembaga dari bijih tembaga dengan cara bereaksi dengan besi dan belerang yang melekat pada batuan sehingga batuan mengandung senyawa besi dan belerang, misalnya FeS2 . Saat larutan peluluh mengalir melalui batu pengikat bijih, bakteri mengoksidasi ion Fe2+ dan mengubahnya menjadi Fe3+. Unsur belerang yang terdapat dalam senyawa FeS2 dapat bergabung dengan ion H+ dan molekul O2 membentuk asam sulfat (H2 SO4 ). Bijih yang mengandung tembaga dan belerang, misalnya CuS, ion Fe3+ akan mengoksidasi ion Cu+ menjadi tembaga divalen atau Cu2+. Selanjutnya, bergabung dengan ion sulfat (SO4 2-) yang diberikan oleh asam sulfat untuk membentuk CuSO4 . Dengan cara tersebut, bakteri tersebut mampu menghasilkan tembaga kelas tinggi. Selain itu, bakteri pencuci, seperti Thiobacillus juga dapat digunakan untuk memperoleh logam berkualitas tinggi, seperti emas, galiu, mangan, kadmium, nikel, dan uranium.

 

Pembahasan Mengenai Mekanisme Tentang Evolusi

Pembahasan Mengenai Mekanisme Tentang Evolusi

Pembahasan Mengenai Mekanisme Tentang Evolusi

Mekanisme Tentang Evolusi
Mekanisme Tentang Evolusi

Mekanisme Tentang Evolusi – Evolusi merupakan perubahan makhluk hidup dalam jangka waktu yang lama dan berlangsung perlahan-lahan. Perubahan ini terjadi dalam satu populasi dan diturunkan dari generasi ke generasi.

Dalam suatu lingkungan, sifat-sifat genetik menentukan keanekaragaman makhluk hidup, keanekaragaman ini meliputi struktur, tingkah laku, dan lain-lain. Jika terjadi perubahan materi genetik, maka terjadi perubahan sifat pada keturunanketurunannya. Hal ini menyebabkan munculnya spesies baru. Perubahan materi genetik ini disebut mutasi. Evolusi terjadi karena adanya mutasi dan seleksi alam. Mari cermati uraian berikut ini.

1. Mutasi Gen

Mutasi gen adalah perubahan kimia gen (DNA) yang dapat menyebabkan terjadinya perubahan sifat suatu organisme yang bersifat menurun. Mutasi dapat terjadi dengan adanya pengaruh luar dan tanpa pengaruh faktor luar. Mutasi yang terjadi tanpa pengaruh faktor luar mempunyai dua sifat, yaitu sangat jarang terjadi, dan umumnya tidak menguntungkan.

Umumnya, mutasi jarang terjadi dan tidak menguntungkan. Mutasi merupakan mekanisme evolusi yang penting dan dapat membentuk spesies baru. Untuk mengetahui hal ini, perlu angka laju mutasi, yaitu angka yang menunjukkan jumlah gen yang mutasi dari seluruh gamet yang dihasilkan oleh suatu individu dari suatu spesies.

Angka laju mutasi suatu spesies umumnya sangat rendah karena faktor-faktor yang menyebabkan mutasi tidak dapat diramalkan secara pasti. Angka laju mutasi berkisar antara satu gen di antara dua ribu sampai jutaan gamet, atau rata-rata 1 : 100.000, artinya dalam setiap 100.000 gamet terdapat satu gen yang mampu bermutasi.

Jadi, angka laju mutasi sangat kecil, tetapi merupakan mekanisme yang penting, karena:

a) setiap gamet mengandung beribu-ribu gen;

b) setiap individu menghasilkan ribuan sampai jutaan gamet dalam satu generasi; dan

c) jumlah generasi suatu spesies selama spesies itu ada banyak sekali.

Angka laju mutasi yang menguntungkan lebih kecil dari pada angka laju mutasi yang merugikan, yaitu perbandingan antara 1 dan 1.000, artinya dari 1.000 mutasi yang terjadi, satu di antaranya mutasi yang menguntungkan. Walaupun mutasi yang menguntungkan ini kecil, karena jumlah generasi selama spesies itu ada sangat besar, maka jumlah mutasi yang menguntungkan besar pula. Hasilnya, seperti pada contoh soal berikut:

1) angka laju mutasi per gen adalah 1 : 100.000

2) jumlah gen dalam individu yang mampu bermutasi adalah 1.000

3) perbandingan antara mutasi menguntungkan dengan mutasi yang terjadi adalah 1 : 1.000

4) jumlah populasi spesies adalah 300.000.000

5) jumlah generasi selama spesies itu ada adalah 6.000 erapa hasil mutasi yang menguntungkan selama spesies itu ada?

Jawab:

1) Jumlah mutasi yang menguntungkan yang mungkin terjadi pada setiap individu: 1/100.000 × 1.000 × 1/1.000 = 1/100.000.

2) Dalam setiap generasi akan terjadi mutasi gen yang menguntungkan 1/100.000 × 300.000.000 = 3.000.

3) Selama spesies itu ada, yaitu 6.000 generasi, mutasi yang menguntungkan adalah 3.000 × 6.000 = 18.000.000.

Jadi, jelas bahwa mutasi yang menguntungkan selama periode evolusi tertentu cukup besar. Sehingga, kemungkinan dihasilkannya spesies yang adaptif menjadi besar pula.

Yang termasuk mutasi yang menguntungkan adalah dihasilkannya spesies yang adaptif dan memiliki vitalitas dan viabilitas tinggi. Sedangkan, mutasi yang merugikan adalah dihasilkannya gen letal yang menimbulkan mutasi letal. Dihasilkan keturunan yang mempunyai viabilitas dan fertilitasnya rendah dan keturunan yang tidak adaptif.

Gen-gen mutan yang merugikan, umumnya bersifat resesif sehingga peristiwa mutasi hanya akan tampak apabila dalam keadaan heterozigot. Hal ini menunjukkan bahwa seleksi alam hanya bekerja terhadap individu homozigot.

a. Frekuensi gen dan genotip di dalam populasi

Frekuensi gen adalah perbandingan antara gen atau genotip yang satu dengan gen atau genotip yang lain di dalam satu populasi. Misalnya, dalam suatu daerah terdapat populasi tanaman berbunga merah MM dan tanaman berbunga putih mm, yang sama-sama adaptif. Apabila diadakan persilangan, maka akan diperoleh tanaman dengan fenotip dan genotip tertentu .

2. Hukum Hardy-Weinberg 

Hukum Hardy-Weinberg menegaskan bahwa frekuensi alel dan genetik dalam suatu populasi (gene pool) selalu konstan dari generasi ke generasi dengan kondisi tertentu. Hal ini, dikemukakan oleh Godfrey Harold Hardy (ahli matematika dari Inggris) dan Wilhelm Weinberg (dokter dari Jerman). Kondisi yang dimaksud oleh Hukum Hardy-Weinberg adalah:

1) Ukuran populasi harus besar Pada populasi yang kecil, aliran genetik (genetic drift) merupakan kesempatan fluktuasi dalam gene pool dan dapat mengubah frekuensi alel. Jadi, ukuran populasi harus besar agar frekuensi alel dalam gene pool selalu konstan.

2) Ada isolasi dari populasi lain (tidak ada imigrasi dan emigrasi) Arus gen (gene flow) merupakan transfer alel antarpopulasi yang berhubungan dengan perpindahan individu atau gamet yang dapat merubah gene pool.

3) Tidak terjadi mutasi Perubahan satu alel menjadi alel lainnya, mengakibatkan mutasi, hal ini dapat mengubah gene pool.

4) Perkawinan acak (random) Jika individu-individu memilih pasangannya dengan sifatsifat tertentu (yang diturunkan), maka pencampuran secara acak gamet-gamet seperti yang diharapkan pada keseimbangan Hardy-Weinberg tidak dapat terjadi.

5) Tidak terjadi seleksi alam Keberhasilan mempertahankan hidup dan reproduksi dapat mengubah gene pool karena mendukung adanya perpindahan beberapa alel dengan mengorbankan alel lainnya.

3. Perubahan Perbandingan Frekuensi Gen pada Populasi 

Saat ini, telah diketahui beberapa faktor penting yang menyebabkan perubahan keseimbangan genetik di dalam suatu populasi. Faktor-fakor tersebut, antara lain: mutasi, seleksi alam, emigrasi dan imigrasi, rekombinasi dan seleksi, dan genetic drift. Untuk lebih mengetahui, mari cermati uraian berikut ini.

a. Mutasi

Apabila ada satu atau beberapa gen yang bermutasi, maka akan terjadi perubahan keseimbangan gen-gen dalam suatu populasi.

b. Seleksi alam

Di danau buatan di Amerika Serikat pernah ditemukan jenis katak berkaki banyak dan jenis katak normal. Katak yang berkaki banyak fertilitasnya rendah atau mandul dan bersifat resesif. Sedangkan, katak berkaki normal mempunyai fertilitas normal dan bersifat dominan. Karena katak berkaki banyak bersifat mandul, maka katak ini dapat dihasilkan dari perkawinan antara katak berkaki normal heterozigot.

c. Emigrasi dan imigrasi

Spesies yang menghuni daerah terpisah oleh geografis tertentu, misalnya lautan. Keadaan ini tidak memungkinkan terjadinya perpindahan secara normal dari satu daerah ke daerah yang lain. Sebagai contoh, spesies Xylocopa nobilis (kumbang kayu) yang dapat kamu temukan di berbagai daerah di Pulau Sulawesi dan sekitarnya. Kumbang-kumbang tersebut menunjukkan perbedaan genetik.

d. Rekombinasi dan seleksi

Rekombinasi gen merupakan mekanisme penting untuk terjadinya evolusi. Rekombinasi genetik berlangsung melalui perkembangan generatif. Sehingga, reproduksi seksual merupakan faktor penting dalam proses evolusi. Seleksi adalah usaha manusia memilih jenis hewan atau tumbuhan sesuai dengan keinginannya. Umumnya yang diseleksi atau dipilih adalah jenis yang bersifat unggul. Rekombinasi gen-gen yang terjadi, karena perkawinan silang merupakan suatu bahan mentah evolusi. Berdasarkan rekombinasi ini dimungkinkan terbentuknya varietas baru.

evolusi

4. Timbulnya Spesies Baru 

Setiap populasi terdiri atas kumpulan individu sejenis dan menempati suatu lokasi yang sama. Suatu individu dapat disebut anggota populasi apabila individu tersebut satu spesies dengan individu lainnya. Individu berbeda masih dapat disebut satu spesies apabila variasi-variasi yang ada tidak menjadi penghalang terjadinya pertukaran gen. Pertukaran gen ini dapat terjadi melalui proses interhibridasi (persilangan). Jadi, perbedaam morfologi, fisiologi maupun tingkah laku tidak dapat dijadikan sebagai alasan untuk memisahkan dua populasi menjadi dua spesies yang berbeda. Terbentuknya spesies baru ini terjadi karena adanya isolasi geografi, isolasi reproduksi, domestikasi dan poliploidi.

a. Isolasi geografi

Apabila beberapa varietas baru hasil dari suatu rekombinasi faktor genetik dan spesies tertentu menghuni tempat yang berlainan, maka mereka akan mengalami 4. Timbulnya Spesies Baru Bab 7 Evolusi 143 perubahan yang mengarah pada terbentuknya spesies baru. Keadaan alam yang terpisah ini menghalangi terjadinya hubungan reproduksi. Hambatan (barrier) seperti ini disebut isolasi geografi.

Isolasi geografi disebabkan oleh kondisi alam, seperti laut, gunung, dan gurun pasir. Isolasi geografi dapat memungkinkan terjadinya pemisahan dua populasi (alapatrih). Dua populasi ini dapat terbentuk karena masing-masing populasi terpengaruh akumulasi faktor ekstrinsik yang menyebabkan terjadi isolasi faktor-faktor intrinsik. Hal ini dapat memungkinkan terjadinya isolasi reproduksi.

b. Isolasi reproduksi

Isolasi reproduksi merupakan hambatan terjadinya perkawinan silang antara dua spesies simpatrik. Spesies simpatrik adalah dua spesies berbeda yang tinggal atau menghuni daerah yang sama. Isolasi reproduksi dapat terjadi melalui isolasi intrinsik. Mekanisme isolasi intrinsik dapat di bagi menjadi tiga macam, yaitu:

1) Mekanisme yang mencegah terjadinya perkawinan sehingga mencegah terjadinya fertilisasi. Isolasi reproduksi yang terjadi karena isolasi intrinsik, antara lain:

a) isolasi ekogeografi

b) isolasi habitat

c) isolasi iklim atau musim

d) isolasi perilaku

e) isolasi mekanik

2) Mekanisme yang mencegah terjadinya hibrida. Mekanisme ini beroperasi dengan mencegah terbentuknya hibrida. Isolasi reproduksi yang terjadi karena isolasi intrinsik, antara lain:

a) isolasi gamet

b) isolasi perkembangan

c) ketidakmampuan hidup suatu hibrida

3) Mekanisme yang mencegah kelangsungan hidup hibrida. Isolasi reproduksi yang terjadi, antara lain:

a) kemandulan hibrida

b) eliminasi hibrida yang selektif Untuk lebih memahami mekanisme intrinsik, mari cermati uraian berikut ini.

1) Isolasi ekogeografi

Bila dua populasi terpisah oleh hambatan fisik sehingga sulit untuk berhubungan, maka masing-masing populasi akan berkembang menyesuaikan diri dengan lingkungannya. Pada suatu ketika keturunannya akan berbeda, sebab masing-masing telah mengalami perubahan genetik karena pengaruh lingkungan. Bila suatu ketika dua populasi tersebut berada pada satu lingkungan, tidak akan mampu mengadakan hibridisasi, karena masing-masing tidak mampu menyesuaikan diri pada linkungan yang baru.

Contohnya, tanaman Platanus occidentalis dan Platanus orientalis. Kedua populasi tidak dapat mengadakan penyerbukan secara alami, apabila dilakukan penyerbukan buatan dan menghasilkan keturunan ternyata fertil.

2) Isolasi Habitat

Isolasi habitat, yaitu isolasi reproduksi yang terjadi akibat dua populasi simpatrik memiliki habitat berbeda. Contohnya, katak jenis Bufo fowleri habitatnya di air tenang dan Bufo americanus habitatnya di kubangan-kubangan air hujan. Apabila dua populasi tempat tinggalnya dicampur, masing-masing jenis akan lebih banyak kawin dengan sesama jenisnya dibanding perkawinan lain jenis. Apabila terjadi perkawinan lain jenis, ternyata keturunan yang dihasilkannya steril.

3) Isolasi iklim atau musim

Isolasi iklim, yaitu isolasi reproduksi yang terjadi apabila dua spesies simpatrik memiliki masa pemasakan kelamin pada musim yang berbeda. Sebagai contoh, Pinus radiata dan Pinus muricata yang banyak hidup di beberapa daerah di Amerika Serikat sebagai populasi simpatrik secara alami tidak pernah melakukan hibridisasi. Hal yang sama juga terjadi pada populasi simpatrik katak jenis Rana. Walaupun hidup pada daerah yang sama, tetapi tidak terjadi perkawinan atau hibridisasi lain spesies.

4) Isolasi perilaku

Isolasi perilaku, yaitu isolasi reproduksi yang terjadi apabila dua spesies simpatrik mempunyai pola tingkah laku kawin berbeda. Contohnya, perilaku kawin pada beberapa jenis ikan.

Ikan X1 : membuat sarang yang digantungkan pada tumbuhan lain. Sarangnya memiliki dua lubang, untuk masuk dan untuk keluar. Agar yang betina masuk ke dalam sarang, si jantan menari-nari dengan gerakan zig zag di depan si betina. Dengan sedikit dorongan, si betina masuk ke dalam sarang.

Ikan X2 : membuat sarang pada dasar perairan dan hanya memiliki satu lubang pintu. Agar si betina mau masuk ke dalam sarang, si jantan melakukan gerakan perkawinan di muka sarang, selanjutnya memaksa si betina untuk masuk ke dalam sarang.

Perbedaan perilaku kawin pada hewan dapat bersifat visual, artinya dapat dipertunjukkan dan dapat bersifat auditif atau berupa perbedaan suara. Bentuk perilaku kawin pada berbagai jenis hewan memiliki kekhasan sendiri-sendiri. Pada berbagai jenis, si jantan menarik pasangan dengan warna bulunya, suaranya, dan gerakannya. Untuk mencegah terjadinya keliru pasangan, pada itik jantan memiliki warna tertentu yang mencolok.

Bentuk perilaku hewan yang bersifat visual lainnya adalah berupa gerak. Bentuk ini dijumpai pada burung, kepiting, serangga, dan lain-lain. Kepiting jantan pada masa kawin menaikkan apit besarnya tinggi-tinggi dan mengangkat badannya sambil berjalan mengelilingi lubang tempat betina. Cara mengangkat kaki, badan serta gerakan kepiting jantan berbeda-beda. Adanya perilaku yang khas, badan serta gerakan kepiting jantan berbeda-beda. Adanya perilaku yang khas ini agar hewan betina tidak salah memilih pasangan kawinnya. Pada jangkrik, hewan jantan menggunakan suara yang berbeda-beda. Hanya hewan betina pasangannya yang sangat mengenal suara hewan jantan pasangannya.

5) Isolasi mekanik

Isolasi mekanik, yaitu isolasi reproduksi yang terjadi apabila dua populasi simpatrik mempunyai bentuk morfologi alat reproduksi yang berbeda. Jadi, isolasi mekanik menyangkut struktur yang menyangkut peristiwa perkawinan. Isolasi mekanik pada hewan dapat terjadi, antara lain hewan jenis jantan berukuran jauh lebih besar dari betinanya. Selain itu, struktur alat kelamin jantan tidak sesuai dengan struktur alat kelamin betinanya. Dalam beberapa jenis hewan berlaku apa yang disebut sebagai “kunci dan gembok” (Lock and Key).

Pada hewan Myriapoda genus Brochoria, jenis jantannya memiliki bentuk alat kelamin yang bervariasi. Sedangkan, betinanya mempunyai bentuk yang serupa.

Pada tumbuhan, isolasi mekanik ini pengaruhnya lebih nyata dibanding dengan hewan, terutama yang berkaitan dengan penyebar serbuk sari. Ada kekhususan bentuk bunga dalam hubungannya dengan hewan penyebar serbuk sari.

6) Isolasi gamet

Isolasi gamet, yaitu isolasi reproduksi yang terjadi apabila dua spesies simpatrik tidak dapat melakukan fertilisasi. Hal ini terjadi karena sel gamet jantan tidak mempunyai kemampuan hidup pada saluran kelamin betinanya.

Sebagai contoh, pada tanaman tembakau inti serbuk yang jatuh di kepala putik tidak dapat mencapai inti sel telur pada kandung lembaga atau ovula. Akibatnya, tidak terjadi fertilisasi. Pada percobaan inseminasi buatan menggunakan objek lalat buah, Drosophilavirilis, Drosophila americana dan Drosophila spesies lain, mekanisme isolasi gametnya bervariasi.

Bila spermatozoid Drosophila virilis diinseminasikan ke saluran telur Drosophila americana, ternyata dalam saluran sel telurnya terbentuk cairan penghambat sehingga spermatozoid tidak dapat bergerak. Pada percobaan lain terjadi mekanisme yang berbeda. Saat spermatozoid masuk ke saluran reproduksi saluran tersebut membengkak sehingga spermatozoid mati.

7) Isolasi perkembangan

Isolasi perkembangan, yaitu isolasi yang terjadi karena embrio hasil fertilisasi dua spesies simpatrik tidak dapat tumbuh dan segera mati. Isolasi seperti ini banyak dijumpai pada berbagai jenis ikan dan katak.

8) Ketidakmampuan hidup suatu hibrida

Beberapa jenis populasi simpatrik dapat melakukan perkawinan. Pembuahan maupun pembentukan embrio dapat berlangsung, tetapi hibridanya lemah, cacat atau mati sebelum mampu melakukan reproduksi. Dengan demikian, walaupun berlangsung perkawinan antara dua populasi simpatrik, tetapi tidak terjadi pertukaran gen. Peristiwa ini dijumpai pada tanaman tembakau. Isolasi seperti ini sering disebut terbentuknya bastar (hibrida) mati bujang.

9) Kemandulan hibrida

Keledai dengan kuda, atau kambing dengan biri-biri dapat dikawinkan dan dapat menghasilkan keturunan. Hibrida yang dihasilkan dapat hidup baik dan normal, tetapi tetap steril atau mandul. Dengan demikian, dua populasi simpatrik tersebut tidak terjadi pertukaran gen.

10) Eliminasi hibrida karena seleksi

Bisa terjadi dua populasi simpatrik melakukan perkawinan, dapat terjadi pembuahan, terbentuk embrio bahkan mampu menghasilkan hibrida yang fertil. Populasi hibrida karena salah pasangan ini, biasanya jauh lebih sedikit daripada hasil perkawinan populasi spesies. Akibatnya semua hibrida dapat terdesak sehingga lambat laun mengalami eliminasi (punah). Dengan demikian, lingkungan akan melakukan koreksi terhadap kekeliruan perkawinan tersebut.

Pembahasan Mengenai Petunjuk Menentukan Fosil Evolusi

Pembahasan Mengenai Petunjuk Menentukan Fosil Evolusi

Pembahasan Mengenai Petunjuk Menentukan Fosil Evolusi

Fosil Evolusi – Homologi Alat-alat Tubuh Berbagai Makhluk Hidup 

Fosil Evolusi – Apabila kamu mengamati struktur organ tubuh dari berbagai jenis hewan, maka kamu dapat menemukan hal yang menarik, yaitu organ-organ tubuh yang mempunyai bentuk dan fungsi berbeda, tetapi mempunyai bentuk dasar sama. Peristiwa ini, dikenal dengan Homologi. Contoh homologi adalah anggota tubuh depan dari manusia dipakai untuk memegang. Sedangkan, pada burung dan kelelawar anggota tubuh depan untuk terbang, kaki depan buaya dan salamander untuk berjalan, sirip dada ikan dan paus untuk berenang. Organ-organ tersebut memiliki bentuk dasar yang sama, tetapi dengan adanya evolusi, organ-organ tersebut menjadi berbeda. Akibatnya, terjadi perubahan adaptasi yang berbeda sehingga fungsinya menjadi berbeda.

Petunjuk Menentukan Fosil Evolusi
Petunjuk Menentukan Fosil Evolusi

 

Adanya homologi organ ini menunjukkan perkembangan evolusi konvergensi. Contohnya: a) Sayap kupu-kupu analogi dengan sayap burung, keduanya berfungsi untuk terbang. b) Sayap kelelawar analogi dengan sayap burung, keduanya berfungsi untuk terbang

Bila dibandingkan tulang-tulang anggota tubuh depan mulai dari ikan, katak, kadal, burung, mamalia hingga manusia tampak adanya perubahan-perubahan yang disesuaikan dengan fungsinya. Selain pada alat gerak, homologi juga dijumpai pada sistem sirkulasi dan urogenitalis vertebrata dari ikan hingga mamalia.

Embriologi Perbandingan

Perkembangan embrio semua vertebrata memperlihatkan kemiripan yang lebih banyak daripada hewan dewasa. Hal ini terlihat jelas pada pembelahan, morfogenesis, dan tahap diferensiasi awal. Persamaan ini sering digunakan sebagai bukti hubungan evolusi antara vertebrata. Hewan mempunyai embrio yang menyerupai embrio leluhurnya. Jadi, tahap embrio hewan yang berbeda-beda dapat lebih mirip satu sama lainnya daripada hewan dewasa.

Perbandingan Biokimia

Semua spesies mewarisi sifat-sifat dari nenek moyangnya. Jenis dan jumlah sifat yang sama merupakan petunjuk jauh dekatnya hubungan kekerabatan. Hal ini juga terjadi pada pewarisan sifat biokimia. Kamu telah mengetahui bahwa DNA setiap spesies mengandung instruksi untuk sintesis RNA dan protein yang penting untuk menghasilkan individu baru. Perbandingan DNA, RNA dan protein merupakan cara untuk mengevaluasi hubungan evolusi di antara spesies. Perbandingan asam nukleat. Perubahan yang unik pada urutan nukleotida dapat terakumulasi pada tiap-tiap garis keturunan. Jauh dekatnya hubungan kekerabatan antarspesies dapat diketahui dengan melihat komplementasi (perpasangan basa) antara rantai DNA atau RNA pada spesies yang disebut hibridisasi asam nukleat.

Perbandingan Fisiologi

Makhluk hidup mulai dari terendah hingga yang paling tinggi tersusun atas sel. Walaupun jumlah sel dan morfologi setelah dewasa berbeda-beda, namun fisiologi di dalam selnya memiliki kemiripan, seperti: a) Metabolisme b) Respirasi c) sintesis protein d) sintesis ATP dan penggunaannya dalam aktivitas hidup

Petunjuk Alat Tubuh yang Tersisa 

Pada berbagai jenis hewan termasuk manusia ditemukan sisa berbagai alat tubuh. Alat ini pada hakikatnya sudah tidak berguna lagi, namun masih djumpai dalam tubuh. Para pakar menyimpulkan bahwa adanya alat-alat tubuh yang tersisa merupakan petunjuk adanya evolusi. Beberapa sisa alat tubuh yang ditemukan pada manusia, antara lain: a) umbai cacing atau appendiks b) selaput mata pada sudut mata sebelah dalam c) otot penggerak telinga d) tulang ekor e) gigi taring yang runcing f) rambut pada dada g) buah dada pada laki-laki Pada hewan, sisa-sisa organ tubuh yang masih ditemukan antara lain sisa kaki belakang ular piton yang mirip benjolan kuku. Dalam organ ini terdapat tulang yang berhubungan dengan gelang panggul. Pada burung kiwi terdapat sisa bangunan sayap. Pada paus yang merupakan mamalia semestinya memiliki rambut pada kulitnya. Tetapi kenyataannya semua paus tidak memiliki rambut tersebut. Sebagai gantinya paus memiliki lapisan kulit yang tebal untuk menjaga stabilitas suhu tubuh, berdasarkan penelitian, embrio paus mempunyai lapisan kulit yang mengandung rambut.